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Solutions of the inhomogeneous wave equation with 
unusual propagation character and global solution of the 
Poisson equation 

W Liicke 
h o l d  Somerfeld Institute for Mathematical Physics, Technische UniversitL Clausthal. 
D-38678 Clausthal, Germany 

Received 13 March 1995 

Abstract. Solutions of the inhomogeneous wave equation propagating into space-like wedge 
regions are used to constmct solutions of the Poisson equation for arbitrary non-localized locally 
integrable inhomogeneities. This, for instance, allows for a general proofof existence of standard 
gauges for the classical electromagnetic field in fourdimensional spacetime. 

1. Introduction 

There may be occasions where you would like to know how to construct a global solution 
of the Poisson equation 

on B3 for badly localized inhomogeneities p .  As an example, consider the gauge problem 
in classical electrodynamics. Given a general field F&”(x)  fulfilling the Maxwell equations 

for some current I & ,  it is quite easy to represent this field on all of B4 in the form 

A suitable potential AP = (Ao. 2)  is obtained by the well known Poimad construction 

A@(?) = -4xp(?) (1) 

a&Fcu = J V  a+II”.p F+ = 0 

F’” = a”AY - aYA’.  (2) 

A?@) = sx,F”’(sx)ds (3) L1 
no matter how rapidly the field might increase at infinity [4, p 101. However, if you want 
to change from this Lorentz covariant gauge to the Coulomb gauge 

by a gauge transformation 
div ,i = 0 (4) 

A” - A W  Ef A’ - ar j 

where f has to be a solution of the Poisson equationj 

Afr = -4?Cp7 (5) 
t The Poisson equation is well defined for Schwartz distrlbutions [SI. ’ However, from the theory of 
pseudodifferential operators it is known that this general case can be solved if it can be solved for fir of Cx-type 
[3, section 41. So, for clarity, we consider only the latter case Then also f7 will be infinitely differentiable. since 
the Laplacian is an elliptic operator [l, section VI.C.31. 
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depending smoothly on the time parameter t, where 

Here you cannot assume pr to be sufficiently localized for the very Coulomb solution 

to exist. How, then, to construct a solution for pr with arbitrary increase at infinity? Thero 
is no general existencc proof for the Coulomb gauge in standard textbaaks such a8 [SI. 
There are lots of examples? allowing special constructions, but one would like to have a 
general construction. 

The corresponding problem far the inhomogeneous WRVE equation 

(6) 
dcf n*=J o=aoao-~ 

is much simpler. Here, an easy solution is the superposition * = *++ 9- of the standard 
solutions 

def 1 +*(x) = / D,t(?cx')j*(x - x ' )  dx' Dmt(x) = Z;;B(XO)~(X~) (7) 

of 

a*= = ,* J * ( ~ )  ge(j&)j(X). 

suppD, C ( x  E R4 : xo = ll.?ll} 
Existence of the integrals (7) is guaranteed by Huygens' principle [21: 

(8) 
This suggests constructing solutions of the Poisson (in four-dimensional spacetime). 

equation (1) of the form$ 

with suitable solutions * of (6) for 

J ( X )  = 4ah(xo)p(x') /h(xo)dxo = 1. 

These solutions must be sufficiently well behaved for t + &w at fixed .? in order to allow 
for the reasoning 

A@(x)=-UQ(x)=-  O W ( x o + t , . ? ) d t = - 4 a  h ( x o + 7 ) p ( . ? ) d ~ = - 4 n p ( X ' ) .  

For badly localized p,  the constructions described in the standard literature such as [6, ch 51 
do not tell us when this requirement is fulfilled. This is because Y(x) picks up contributions 
from j (x ' )  wherever xo - x" =- 0 = (x - x')'. Even for fixed .? (and compactly supported 
h)  these contributions may become arbitrarily large for xo 4 CO. Therefore, the main topic 
of the present papers is to construct solutions of the inhomogeneous wave equation for 
which this effect is seen to be suppressed. 

t In case PQ) = p(i.?l), for example. the problem becomes trivial in polar coordinates. 
$ For well localized p integralins @ = @+'+ @- will give the Coulomb solution of (1). ngnin. 

s s 3 - 



Solutions of the inhomogeneous wave equation 5395 

2. Waves with unusual propagation character 

In one space dimension there are no problems of the indicated type at all. Nevertheless, in 
order to get an idea, let us discuss this trivial case first. 

Here, while (1) becomes completely trivial, the solution of the inhomogeneous wave 
equation 

may be reduced to elementary integration by use of the light-cone coordinates 

(€1) 
$Of 0 

& m x  & X I .  

In these coordinatcs (10) becomes 

where 

2 
and similarly for .f. Obviously, a special solution of (12) is given by 

This solution has the interesting stability property 

supp j c V d  * supp f j  c vocd 

V d  = {(tt, 6 4  E IW2 : at+ 2 Oq'& 2 o} 
where 

dei for U ,  U' E {+, -1 , 

Rewritten in terms of xo and X I ,  e.g. for (U, a') (+, -), this means 

supp j c w(') { x  E I W ~  : 1x01 < X I ]  =$ supp fi c ~ ( 2 )  (13) 
for the special solution 

~ f i ( X 0 , X l )  = ~ j ( x O + x ' , x O - x ' )  

of (10). Therefore, given 
j ( x 0 , x I )  = -4zh(x0)p(x ' )  

witht h E D(R) and locally integrable p,  we may easily construct a solution f = fspce of 
(IO), for which 

W I 1 kf - 1 f s p e o ( ~ o , ~ ' ) d ~ o  

exists. To make this obvious, it is sufficient to check the case x 1  < 1 j p ( 2 )  = 0. Then, 
since h is compactly supported, the shift 

j R ( X O , X I )  E J ( X 0 , X I  - R) 
t-Following Schwanz [SI, we denote by D(IR4) the spnce of Cx functions on R4 with compact suppon and by 
S(R44) the spnce of tempered functions, i.e, Cx functions on R4 with rapid decrease nt infinity. 
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of j is supported by W(" for sufficiently large R. This implies supp fix c W@) and 
therefore supp fIpec C W" - R for the special solution 

fpcs(X 3 X ) - f j ~ ( X ~ , X l  
0 l E  R) 

of (10). Obviously, then, the choice 1 h(xo) dxo = 1 implies 

Admittedly, this is a very crazy way of solving the nivial onedimensional version (14) 
of (1). However, this method may be adjusted to work also in three space dimensions. 
Evidently, no additional problem arises if ~ ( x )  is constant in x2 and x 3 ,  implying 

supp j c ( p  E ~t~ : p2 = p3  = 0) 

j ( p )  E ( ~ i r 1 - 2  / 1 (x)eipx d.x . 
for its Fourier transform 

This suggests the following generalization? of (13). 
Lemma 2.1. Let m > 0 R > 2m, let J E S(R4) fulfil the conditions 

{ x   ER^ : lxol < X I )  suppj c w supp j c { p   ER^ : ( p 2 ) z +  ( p 3 Y  < R ~ / z }  
and define 

s dei dei 
el = (0, 1,O.O)  j ( p  - iRel) = (2ir)-' j(x)e'(P-'Rel)X dx 

Then 

is a Cm function fulfilling the conditions 

@ + m 2 ) f = j  s u p p f c w .  ( 1 3  

ProoJ The condition supp J c W guarantees that e-Rx' J ( x )  is a tempered function of x 
and, consequently, j ( p  - iRel) a tempered function of p .  Since 

\ ( p  - iRel - iq)' - m2)R2/4 - m2 > 0 (16) 
this shows, first of all, that f ( x )  is Cm (even though not tempered) and, secondly, that 

for p E suppJ and q E W 

(U+ mz)f(x) = (Zn)-' j ( p  - iRel)e-'(P-'Rel)X d p .  (17) s 
Now for fixed p2 ,  p 3  define 

gp1.p3 ( x  , x - - j (x)e-i(pzx2+p3x3) dxz dx3 . 

suppgp2.p3 c w = ( ( X 0 , X l )  E B2 : 1x01 < X I ) .  

9 2 z  
This is a tempered function of xo,  X I  with 

dd 

? Thank to the cut-off in ( p 2 , p 3 )  the (x'.x')-independence of 1. exploited above, is sufficiently well 
approximated. 
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Therefore its Fourier-Laplace transform 

;(PO + iq", 

is an analytic function of ( p o  + iqo, p L  + iql) in the open? tube BZ - i W  and for every 
integer N there is a polynomial PN,p'.p3(qo, q l )  for which 

+ iq', p*,  p 3 )  = - gp2,,,(xo, x~)e+i((~o+iqo)xu-(~'+iq')x') ,.@&I 
2K ' J  

(18) 
This allows deformation of the path for the (p'  - $)-integration in the complex plane to 
get 

P dP' 2n: 'S 2 K  ' S  j ( p  - iRel)e-ipo~oe+i(p'-i~)~'dpO dpl = - j(p)e-ipoxoe+ip'x' d 0 

=gp2.p3(xo ,xI) .  
Therefore 

J ( X )  = - gp?,pi(xo,  x1)e+i(~'rz+~3x3) dpzdp3 
212 ' S  

= (k)-2 j ( p  - iRel)e-'(P-iRC1)Xdp, 

By equation (17) this implies 

So we are left to prove supp j c W .  Consider any fixed x E R4 \ W .  Then, for Suitable 
q E W x [ ( O ,  0)) we have qx > 0. By straightforward generalization of (19) we get 

J ( X )  = (n+m2)f(x). 

j (x )  = -(&)-2 j(P - iRel - %) e-i(p-iRel-iAg)x d 0 P dP' J ( p  - iRel - ihq)* - mz 
for all h > 0. Since, by (16) and (le), the right-hand side vanishes for A + +cc this 
proves j ( x )  = 0 for such x .  I 

Allowing for m > 0 in lemma 2.1-which would not be necessary for our purpose- 

Usually, solutions of the Klein-Gordon equation describe the propagation of particles 
(or antiparticles) with rest mass m > 0 and, therefore, rapidly decrease outside the 
light-cone [7, p 1571 rather than inside the light-cone. 

emphasizes the strange propagation character of the solution: 

3. Solutions of the Poisson equation 

As explained in section 1 we want to construct solutions of (6), which may be time-averaged, 
for inhomogeneities of the form 

Every such j can be written as a finite sum of Cm-functions g, which have either compact 
support or support contained in the interior of some cone of the form 

(21 )  

J ( X )  = -4irh(xo)p(x') h E D(E4') p infinitely differentiable. (20) 

d e f  CK = {AX : A 2 0, x E K) 
where K, depending on g,, results by some spatial rotation around the origin from a compact 
subset of W. Therefore, our problem is essentially solved by the following. 

t As usual, the interior of a set M is denoted by g 
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Lemma 3.1. Let m > 0, and let J be a Cm function vanishing outside CK for some compact 
subset K of W. Then there are Cm functions f, (0 on W4 fulfilling the conditions 

( ~ + m ' ) f = ~ - q  s u p p j c ~  ~ E S ( R ~ ) .  

ProoJ Since 
0) 

CK c UW + vel) 
V-0 

and since CK n R4 \ (W C UQ) is bounded for all U E Z+, WO may reprcnent J in tho form 

d o r ) = ~ l v ( x )  x e R '  
V S  

with 

j ,  E D ( H ~ ~ )  supp j V  c w + vel 

for U E E+.. Next we approximate the j v  by tempered functions xu fulfilling the conditions 

suppxv c W + vel 

supp 2, C [ p E R4 : (p')' + (p3)' c R : / 2 )  

and 

for R, large enough. 

This approximation may be done sufficiently rapidly (w.r.t. U + 03) to ensure convergence 
of 

in the topology of S(R4). By lemma 2.1, then, we easily get Cm solutions f, of 

Of, = x u  

with 

suppf, c W t v e l .  

With these fv ,  obviously, 

fulfills !he required conditions. m 
Corollary 3.2. Let J be a Cm function vanishing outside a time-slice region ( x  E R4 : 
(xoI < 5 ) .  Then there are Cm functions f, 9 on R4 fulfilling the conditions 

of = J - (0 SUpp f C w4 \ $9 E S(R4).  (22) 

Proof: Choose any compact subset K c with el E $. Then, for sufficiently large n ,  
there are spatial rotations A , ,  , . . , A, and Cm functions ;I, , . . , In fulfilling the conditions 

SUPP 1, c CK 
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Now, by lemma 3.1, for every U E (1, . . . , n )  there are Cm functions jL, 6, fulfilling 

Dju = i u  - $U 

ntv = Is - vv 
supp ju  c w 6u E s(a4). 

suge f v  c E4 \Y YIP B B(R? 
Exploiting rotational invariance of the wave oporntor 0 we therefore have 

WheM 

fu gf AJ 1" a,j Vu 2 Au@ * 
By equation (23), this shows that 

fulfil the required conditions. I 

Now it is very easy to prove our main result: 

Theorem 3.3. For every C* function p on, W3 there is a Cm solution Q of the Poisson 
equation (1). 

Proof, Choose any h E D(Rl) with 

/ h(xo)  dxO = 1 

and define J by (20). By corollary 3 there are Cm functions f, 'p fulfilling (22). By 
equations (6) and (7), we therefore have 

f,(n) gf f ( x )  - x')cp(x - x ' )  dx' Vn E P4 S D  ( 
is a solution of 

Of,(x) = - 4 z h ( ~ ~ ) p ( . ? )  

which may be integrated over time to give a solution 

O(?) = f,(xo,.?)dxo 

I 
s 

of equation (1). 

Generalization to arbitrary locally integrable inhomogeneities p is straightforward. 

f As usual, we detlne 

AJYX) %'I(A-~x) v x  E ~4 

for functions on R4 and Lorentz transformetions A ,  
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